skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Anderson Y"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We study the statistical estimation problem of orthogonal group synchronization and rotation group synchronization. The model is $$Y_{ij} = Z_i^* Z_j^{*T} + \sigma W_{ij}\in{\mathbb{R}}^{d\times d}$$ where $$W_{ij}$$ is a Gaussian random matrix and $$Z_i^*$$ is either an orthogonal matrix or a rotation matrix, and each $$Y_{ij}$$ is observed independently with probability $$p$$. We analyze an iterative polar decomposition algorithm for the estimation of $Z^*$ and show it has an error of $$(1+o(1))\frac{\sigma ^2 d(d-1)}{2np}$$ when initialized by spectral methods. A matching minimax lower bound is further established that leads to the optimality of the proposed algorithm as it achieves the exact minimax risk. 
    more » « less